

The Future of Molecular Imaging

Gamma MRI

The Need

1

Over 165 million people in Europe are affected by at least one brain disease such as Alzheimer's, Parkinson's, dementia, stroke etc.

Most neurological diseases are aging sensitive and with the ongoing demographic changes, their incidence is expected to increase. This will be one of the major societal challenges in Europe and worldwide.

2

Stroke alone is the second most common cause of death and the third leading cause of disability worldwide.

Nearly 85% of strokes are of the ischaemic subtype that can be treated by restoring blood flow to the ischaemic brain through thrombolysis or thrombectomy. B

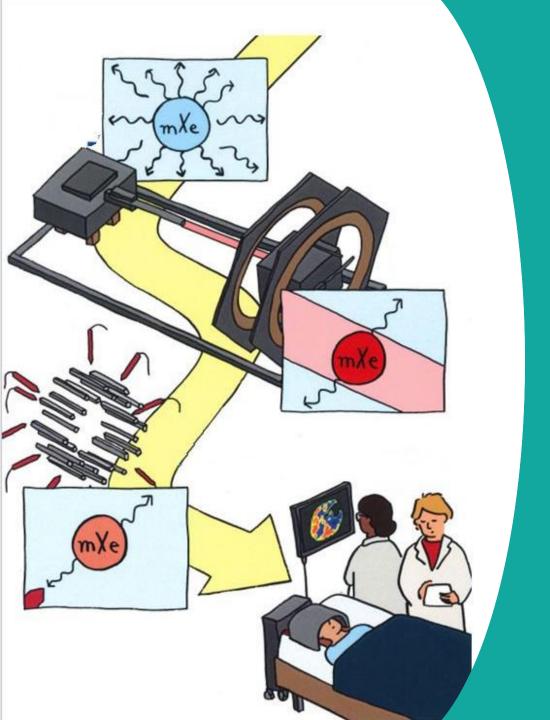

But only within a relatively narrow time window of 4–7 hours after ischemic onset.

3

The evolution of ischaemic damage varies much among patients and a careful selection of the patient's treatment path, based on imaging properties of the ischaemic brain, is essential to achieve significant improvement.

In the challenging move away from 'one size fits all' to personalized medicine, a multidisciplinary approach is required.

How to Improve


Molecular imaging at the cellular and molecular levels, of the processes involved in these diseases is an essential diagnostic tool to detect and correctly diagnose illnesses in an early stage of development.

What is Missing

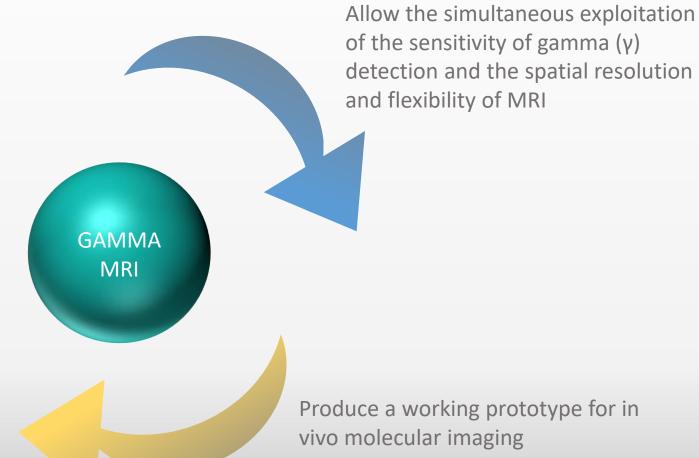
Despite undergoing advances, current efforts in medical imaging (especially for the brain) rely on bulky, expensive and complex highfield MRI3, hybrid PET-MRI or PET-CT scanners

The GAMMA-MRI Proposition

The γ MRI project will develop a working prototype for in vivo molecular imaging, based on a revolutionary technology, allowing the simultaneous exploitation of the sensitivity of gamma (γ) detection and the spatial resolution and flexibility of MRI.

In essence, yMRI will provide a ground-breaking technology for multi-tracer molecular imaging.

γMRI is not just a hybrid approach combining separate modalities but a single new modality, simultaneously achieving the high spatial resolution of MRI and the high sensitivity of PET with faster scan time


Not requiring ultra-high MRI magnetic fields and expensive EM shielded rooms, nor detection of coincidence γ rays as in PET, γ MRI will be less complex and thus less expensive than present state-of-theart devices, especially hybrid ones

This disruptive approach of a more accurate and widely available molecular imaging technology will pave new ways for patient care and medical imaging market

GAMMA-MRI will give access to biomarkers currently out of reach with state-of-the-art techniques. And the combined evaluation of related processes becomes possible (e.g. perfusion and metabolism).

Objectives

Develop a clinical molecular imaging device based on the physical principle of anisotropic gamma emission from hyperpolarised metastable Xenon

Scientific Highlights

- 1 γMRI brings the spatial resolution of MRI (<1 mm) with the sensitivity of PET
- 2 γMRI surpasses by 1000 times the enhanced sensitivity of hyperpolarised MRI bringing it to molecular imaging standards independently on the magnetic field. Weaker, with less requirements on homogeneity, and therefore cheaper magnetic fields can be used
- Simultaneous high sensitivity and high resolution are possible in γ MRI. Positioning is given by MRI-sequences, asymmetry of γ -ray yields tracer amount
- Several hyperpolarised radiotracers can be used simultaneously and easily be detected separately just based on the energy of the γ ray
- MRI will develop new strategies to store hyperpolarised tracers for transport, from a central site of production to the imaging system

Expected Results

1 ______ 3 _____ 2

Production of
hyperpolarised
gamma-emitting
xenon isomers —
preserving
hyperpolarisation
until delivery to the
targeted organ

Development of advanced image acquisition and reconstruction techniques using physics and artificial intelligence-based approaches

Design and assembling of a first prototype with a low-field versatile magnet

Achieve the first preclinical proof-of-concept brain imaging experiment

Current Status

The GAMMA-MRI project was started on the 1st of April 2021, and it is in the first year of development.

Currently, the overall system design has been completed, first experiments with Xenon sources have been started, components for the manufacturing of the magnet have been ordered and the framework for the development of the simulations and the imaging software is in an advanced state of development.

The GAMMA-MRI Consortium

HAUTE ECOLE SPECIALISEE DE SUISSE OCCIDENTALE (Project Coordinator) https://www.hesge.ch/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) https://www.cern.eu/

UNIVERSIDAD COMPLUTENSE DE MADRID https://www.ucm.es/

UNIVERSITE DE GENEVE https://www.unige.ch/

KATHOLIEKE UNIVERSITEIT LEUVEN https://www.kuleuven.be/

RS2D https://rs2d.com/

INSPIRALIA (Dissemination manager) https://www.inspiralia.com/

Contact us

Mr. Ruben Rodriguez Dissemination Manager info@inspiralia.com www.gamma-mri.eu

