Slide Medical imaging has revolutionized Europe’s healthcare, from diagnostics to treatment plans, and it is nowadays impossible to imagine a contemporary healthcare system without its benefits. In the last decades, technological developments have been at the core of new imaging modalities, driving existing modalities with known physics principles to new levels (e.g. low dose or spectral CT), enabling new routine clinical tools (e.g. diffusion tensor imaging), and opening new avenues for research, diagnostic and treatment. However, lack of sensitivity, low spatial resolution or even accessibility to devices all still hinder the applicability of medical imaging to address the major healthcare challenges of an ageing Europe.
0 million
people in Europe are affected by at least one brain disease such as Alzheimer’s, Parkinson’s, dementia, stroke etc.
of strokes are of the ischaemic subtype that can be treated by restoring blood flow to the ischaemic brain through thrombolysis or thrombectomy

Slide The evolution of ischaemic damage varies much among patients and a careful selection of the patient’s treatment path, based on imaging properties of the ischaemic brain, is essential to achieve significant improvement in the outcome. In the challenging move away from 'one size fits all’ to personalized medicine, a multidisciplinary approach is required. In that context, molecular imaging, at the cellular and molecular levels, of the processes involved in these diseases is essential. However, despite undergoing steady developments, current efforts in medical imaging (especially for the brain) rely on bulky, expensive, and complex high-field MRI or hybrid PET-MRI or PET-CT scanners. The Gamma MRI project goes beyond current technological paradigms in brain imaging. Gamma MRI will develop a working prototype for in vivo molecular imaging, based on a revolutionary technology, allowing the simultaneous exploitation of the sensitivity of gamma (γ) detection and the spatial resolution and flexibility of MRI. Gamma MRI is not just a hybrid approach combining separate modalities but a single new modality, simultaneously achieving the high spatial resolution of MRI and the high sensitivity of PET with faster scan times. Not requiring ultra-high MRI magnetic fields and expensive EM shielded rooms, nor detection of coincidence γ rays as in PET. Gamma MRI will be less complex and thus less expensive than present state-of-the-art devices, especially hybrid ones. This disruptive approach of a more accurate and widely available molecular imaging technology will pave new ways for patient care and medical imaging market.